Structure of 4-Bromo-13 α-methyl-13a αH-tetrahydropseudocoptisin

By Ana M. Atkinson* and D. Rogers
Chemical Crystallography Laboratory, Imperial College, London SW7 2AY, England

(Received 23 May 1991; accepted 3 October 1991)

Abstract

Bromo-5,6,14,14a-tetrahydro-14 α -methyl-8 H -bis $[1,3]$ benzodioxolo $\left[5,6-a: 5^{\prime}, 6^{\prime}-g\right]$ quinolizine, $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{BrNO}_{4}$, monoclinic, $I 2 / a, M_{r}=416.271$, $a=25.259$ (2), $b=4.876$ (2), $c=28.326$ (2) $\AA, \beta=$ 96.215 (2) $^{\circ}, \quad V=3468.2 \AA^{3}, \quad Z=8, \quad D_{m}=1.59$ (by flotation) , $\quad D_{x}=1.5944 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda(\mathrm{CuK} \alpha)=$ $1.54178 \AA, \mu=34.630 \mathrm{~cm}^{-1}, \quad F(000)=1696, \quad R=$ 0.038 for 2260 unique reflections. The molecule could be envisaged as composed by two nearly perpendicular planes with dihedral angle between rings A and D of $69.98(9)^{\circ}$ and torsion angles of $173.7(2)^{\circ}[\mathrm{C}(8)-$ $\mathrm{N}(7)-\mathrm{C}(13 a)-\mathrm{C}(14)]$ and $65.0(2)^{\circ}[\mathrm{C}(6)-\mathrm{N}(7)-$ $\mathrm{C}(13 a)-\mathrm{C}(13)]$. The B / C ring fusion is cis and the H atoms at $\mathrm{C}(13)$ and $\mathrm{C}(13 a)$ are trans. The $\mathrm{C}-\mathrm{N}$ bonds are arranged tetrahedrally round $\mathrm{N}(7)$ and the lone pair on $\mathrm{N}(7)$ is cis to the H atom at $\mathrm{C}(13 a)$.

Experimental. A yellowish parallelepiped crystal [$0.35 \times 0.175 \times 0.075 \mathrm{~mm}]$ provided by Professor Pai was used for data collection on a Siemens off-line automatic four-circle diffractometer with Ni -filtered $\mathrm{Cu} K \alpha$ radiation, and a $\mathrm{Na}(\mathrm{Tl}) \mathrm{I}$ scintillation counter. Cell parameters were determined from three highangle axial $K \alpha_{1}$ and $K \alpha_{2}$ reflections measured on the diffractometer with $\mathrm{Cu} K \alpha$ radiation and $\theta-\varphi$ scan. Space group $I 2 / a$ was determined from systematic absences ($h k l, \quad h+k+l=2 n ; \quad h 0 l, \quad h=2 n$) and intensity statistics (Rogers, 1965). 2589 independent reflections were measured ($0<h<28,0<k<5$, $-31<l<31, \sin \theta / \lambda<0.562 \AA^{-1}$) by $\theta-2 \theta$ scan technique using the 'five-value' (Allen, Rogers \& Troughton, 1971) measuring procedure, from which 329 had $I<2.59 \sigma(I)$. Reference reflection $(8,0,20)$ was monitored every 50 reflections with no significant deviation. The data were brought to a uniform arbitrary scale by the use of this reflection (Allen, Rogers \& Troughton, 1971) and corrected for Lorentz and polarization factors but no absorption correction was applied. The structure was solved by the heavy-atom method. H atoms were located from difference Fourier syntheses and allowed to refine isotropically. Anisotropic displacement parameters were used for all non-H atoms. The structure was

[^0]Table 1. Fractional atomic coordinates ($\times 10^{5}$) and equivalent isotropic temperature factors (\AA^{2}) for non- H atoms, with e.s.d.'s in parentheses

	$B_{\text {eq }}=(4 / 3)\left[a^{2} \beta_{11}+b^{2} \beta_{22}+c^{2} \beta_{33}+(a c \cos \beta) \beta_{13}\right]$.			
	x	y	z	$B_{\text {cq }}$
Br	3826 (2)	5247 (12)	10618 (2)	5.44
C(1)	18689 (12)	-40846 (73)	5982 (11)	2.58
C(2)	13796 (12)	-42481 (79)	3541 (11)	2.86
C(3)	9509 (13)	-28711 (87)	4914 (12)	3.30
C(4)	9984 (13)	-12559 (83)	8920 (12)	3.25
$\mathrm{C}(4 a)$	14977 (13)	- 10243 (74)	11596 (11)	2.70
C(5)	15517 (14)	6077 (82)	16167 (12)	3.28
C(6)	21187 (13)	8621 (74)	18465 (11)	2.79
N(7)	24160 (10)	- 16606 (57)	17888 (5)	2.39
C(8)	29366 (13)	-16946 (73)	20646 (10)	2.72
$\mathrm{C}(8 a)$	33396 (12)	2389 (72)	18893 (11)	2.54
C(9)	37617 (13)	12106 (82)	22057 (11)	3.11
C(10)	41180 (13)	29379 (84)	20364 (12)	3.26
C(11)	40727 (13)	37036 (82)	15623 (12)	3.21
C(12)	36682 (13)	28010 (81)	12471 (11)	3.06
C(12a)	32874 (12)	10070 (71)	14112 (10)	2.42
C(13)	28203 (12)	762 (69)	10694 (11)	2.48
$\mathrm{C}(13 a)$	24776 (12)	-21384 (68)	12830 (10)	2.28
C(14)	19301 (12)	-24191 (68)	10074 (11)	2.33
C(15)	29938 (16)	-8671 (98)	5917 (12)	4.42
O(3)	45519 (10)	42138 (72)	22766 (10)	5.20
$\mathrm{O}(4)$	44758 (10)	54918 (69)	14852 (10)	4.86
C(17)	48048 (20)	57012 (147)	19232 (16)	5.50
O(1)	12238 (8)	- 57471 (62)	-536 (8)	3.99
C(16)	6708 (16)	-53266 (150)	-1543 (18)	5.41
$\mathrm{O}(2)$	5044 (9)	- 33530 (71)	1806 (9)	4.71

refined by full-matrix least squares ($X R A Y 70$; Stewart, Kundell \& Baldwin, 1970) based on F. Unit weights were used throughout the calculations. Nine strong low-angle reflections which had $\left|F_{o}\right| \ll\left|F_{c}\right|$ were suspected of being affected by extinction and therefore removed. The refinement converged at $R=$ $0.038, S=1.66,(\Delta / \sigma)_{\max }=0.119, \Delta \rho_{\max }=0.3, \Delta \rho_{\min }$ $=-0.2 \mathrm{e} \AA^{-3}$. 304 parameters were varied. Final fractional coordinates with equivalent isotropic thermal parameters for all non-H atoms are listed in Table $1 . \dagger$ Bond lengths and valence angles are within
\dagger Lists of structure factors, anisotropic and isotropic displacement parameters, H-atom coordinates, bond lengths and valence angles including those involving H atoms, torsion angles and least-squares planes have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54715 (15 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: AB0225]
© 1992 International Union of Crystallography

Fig. 1. Numbering of the atoms in the title compound.
the accepted values. Atomic scattering factors were taken from Doyle \& Turner (1968) except those for H which were taken from Stewart, Davidson \& Simpson (1965); anomalous-dispersion data for Br were from Cromer (1965). Fig. 1 shows the numbering scheme and Fig. 2 is an ORTEP (Johnson, 1965) representation of the packing of the molecules in the unit cell.

Related literature. The structures of the title compound and 4-bromo-13 β-methyl-13a αH-tetrahydropseudocoptisin have been compared by Rogers, Atkinson Williams, Waight, Pai, Nagarajan, Natarajan, Suguna, Rajeswari, Chandrasekaran, Rajaraman \& Manikumar (1982). Related structures are capaurimine mono- p-bromobenzoate (Kametani, Ihara, Honda, Shimanouchi \& Sasada, 1971), capaurine hydrobromide (Shimanouchi, Sasada, Ihara \& Kametani, 1969), and cis-5,6,13,13a-tetra-hydro-3,9-dihydroxy-1,2,10-trimethoxy-8 H -dibenzo[a,g]quinolizine hydrobromide monohydrate (Shimanouchi, Sasada, Wakisaka, Kametani \& Ihara, 1970). Work on protoberberines and

Fig. 2. ORTEP (Johnson, 1965) stereoscopic projection of the unit-cell contents. a is vertical, \mathbf{c} is horizontal and \mathbf{b} is out of the plane of the paper.
tetrahydroprotoberberines is described in a review by Pai, Nagarajan, Suguna \& Natarajan (1977).

References

Allen, F. H., Rogers, D. \& Troughton, P. G. H. (1971). Acta Cryst. B27, 1325-1337.
Cromer, D. T. (1965). Acta Cryst. 18, 17-23.
Doyle, P. A. \& Turner, P. S. (1968). Acta Cryst. A24, 390-397.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Kametani, T., Ihara, M., Honda, T., Shmanouchi, H. \& Sasada, Y. (1971). J. Chem. Soc. C, pp. 2541-2545.
Pai, B. R., Nagarajan, K., Suguna, H. \& Natarajan, S. (1977). Heterocycles, 6, 1377-1439.
Rogers, D. (1965). Computing Methods in Crystallography, edited by J. S. Rollett, pp. 117-132. Oxford: Pergamon Press.
Rogers, D., Atkinson, A., Williams, D. J., Waight, E. S., Pai, B. R., Nagarajan, K., Natarajan, S., Suguna, H., Rajeswari, S., Chandrasekaran, S., Rajaraman, R. \& Manikumar, G. (1982). Indian J. Chem. Sect. B, 21, 60-62.
Shimanouchi, H., Sasada, Y., Ihara, M. \& Kametan, T. (1969). Acta Cryst. B25, 1310-1319.
Shimanouchi, H., Sasada, Y., Wakisaka, K., Kametani, T. \& Ihara, M. (1970). Acta Cryst. B26, 607-616.
Stewart, J. M., Kundell, F. A. \& Baldwin, J. C. (1970). The XRA Y70 system. Tech. Rep. TR-646. Computer Science Center, Univ. of Maryland, College Park, Maryland, USA.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

6,6"'-Dibromo-4'-phenyl-2,2':6', $\mathbf{2}^{\prime \prime}$-terpyridine

By Edwin C. Constable, Fatima K. Khan, Victoria E. Marquez and Paul R. Raithby
University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, England

(Received 3 September 1991; accepted 11 October 1991)

Abstract

C}_{21} \mathrm{H}_{13} \mathrm{Br}_{2} \mathrm{~N}_{3}, M_{r}=467.16\), orthorhombic, Pbcn, $a=7.366$ (3), $b=12.006$ (4), $c=20.601$ (5) \AA, $V=1822$ (1) $\AA^{3}, Z=4$ (implying that each molecule lies on a twofold special position), $D_{x}=$ $1.702 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda(\mathrm{CuK} \mathrm{\alpha})=1.5418 \AA, \quad \mu=$

$5.36 \mathrm{~mm}^{-1}, F(000)=920, T=298 \mathrm{~K}, R=0.037$ for 1327 unique observed reflections with $F>4 \sigma(F)$. The molecule lies on a twofold rotation axis which runs through N and one C of the central pyridyl ring. The molecule exhibits a trans,trans arrangement of © 1992 International Union of Crystallography

[^0]: * Address for correspondence: 390 Eastcote Lane, South Harrow, Middlesex HA2 9AJ, England.

